skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shakya, Bicky"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Logic locking has recently been proposed as a solution for protecting gate level semiconductor intellectual property (IP). However, numerous attacks have been mounted on this technique, which either compromise the locking key or restore the original circuit functionality. SAT attacks leverage golden IC information to rule out all incorrect key classes, while bypass and removal attacks exploit the limited output corruptibility and/or structural traces of SAT-resistant locking schemes. In this paper, we propose a new lightweight locking technique: CAS-Lock (cascaded locking) which nullifies both SAT and bypass attacks, while simultaneously maintaining nontrivial output corruptibility. This property of CAS-Lock is in stark contrast to the well-accepted notion that there is an inherent trade-off between output corruptibility and SAT resistance. We theoretically and experimentally validate the SAT resistance of CAS-Lock, and show that it reduces the attack to brute-force, regardless of its construction. Further, we evaluate its resistance to recently proposed approximate SAT attacks (i.e., AppSAT). We also propose a modified version of CAS-Lock (mirrored CAS-Lock or M-CAS) to protect against removal attacks. M-CAS allows a trade-off evaluation between removal attack and SAT attack resiliency, while incurring minimal area overhead. We also show how M-CAS parameters such as the implemented Boolean function and selected key can be tuned by the designer so that a desired level of protection against all known attacks can be achieved. 
    more » « less
  2. Integrated circuit (IC) camouflaging has emerged as a promising solution for protecting semiconductor intellectual property (IP) against reverse engineering. Existing methods of camouflaging are based on standard cells that can assume one of many Boolean functions, either through variation of transistor threshold voltage or contact configurations. Unfortunately, such methods lead to high area, delay and power overheads, and are vulnerable to invasive as well as non-invasive attacks based on Boolean satisfiability/VLSI testing. In this paper, we propose, fabricate, and demonstrate a new cell camouflaging strategy, termed as ‘covert gate’ that leverages doping and dummy contacts to create camouflaged cells that are indistinguishable from regular standard cells under modern imaging techniques. We perform a comprehensive security analysis of covert gate, and show that it achieves high resiliency against SAT and test-based attacks at very low overheads. We also derive models to characterize the covert cells, and develop measures to incorporate them into a gate-level design. Simulation results of overheads and attacks are presented on benchmark circuits. 
    more » « less